
Visual Prompt Tuning for Generative Transfer Learning

Kihyuk Sohn, Yuan Hao, José Lezama, Luisa Polania,
Huiwen Chang, Han Zhang, Irfan Essa, Lu Jiang

Google Research

Abstract

Transferring knowledge from an image synthesis model
trained on a large dataset is a promising direction for learn-
ing generative image models from various domains effi-
ciently. While previous works have studied GAN models, we
present a recipe for learning vision transformers by gener-
ative knowledge transfer. We base our framework on state-
of-the-art generative vision transformers that represent an
image as a sequence of visual tokens to the autoregressive
or non-autoregressive transformers. To adapt to a new do-
main, we employ prompt tuning, which prepends learnable
tokens called prompt to the image token sequence, and in-
troduce a new prompt design for our task. We study on a
variety of visual domains, including visual task adaptation
benchmark [71], with varying amount of training images,
and show effectiveness of knowledge transfer and a signifi-
cantly better image generation quality over existing works.

1. Introduction
Image synthesis has achieved tremendous progress re-

cently with the improvement of deep generative models [2,
11,18,60,62]. The goal of image synthesis is to generate di-
verse and plausible scenes resembling the training images.
A good image synthesis system can capture the appearance
of objects and model their interactions to generalize and cre-
ate novel scenes. However, the generalization ability is usu-
ally determined by the amount of training images. Without
sufficient data, the synthesis results are often unsatisfactory.

Transfer learning, a cornerstone invention in deep learn-
ing, has been proving its indispensable role across a broad
array of computer vision tasks, including classification [31],
object detection [16, 17], image segmentation [20, 21], etc.
However, transfer learning is not yet a de facto technique
for image synthesis. While recent efforts have shown suc-
cess in transferring knowledge from pretrained Generative
Adversarial Network (GAN) models [42, 53, 64, 68], these
demonstrations are limited by narrow visual domains, e.g.,
faces or cars [42, 68], as illustrated in Fig. 1, or requiring a
non-trivial amount of training data [53, 64] to transfer to an
off-manifold distribution.

In fact, some recent works [56,73] have found that, even
when the training data is limited in quantity, learning GANs
from scratch with advanced techniques outperforms GAN
transfer approaches, implying that the transfer learning may
not even be necessary for generative modeling. Such obser-
vation is in direct contrast to the essential role of transfer
learning for discriminative models,1 which suggests trans-
fer learning for image synthesis remains under-exploited.

In this work, we approach the transfer learning for image
synthesis using generative vision transformers, an emerg-
ing class of image synthesis models, such as DALL·E [47],
Taming Transformer [14], MaskGIT [6], CogView [12],
NÜWA [67], or Parti [70], that excel in several image syn-
thesis tasks. We closely follow the recipe of transfer learn-
ing for image classification [31], in which a source model
is first trained on a large dataset (e.g., ImageNet) and then
transferred to a diverse collection of downstream tasks, ex-
cept in our setting the input and output are reversed and the
model generates images from a class label. Our study em-
ploys the visual task adaptation benchmark (or VTAB) [71],
a standard and challenging benchmark for studying transfer
learning. VTAB consists of 19 visual recognition tasks and
compiles images from diverse and distinctly different visual
domains, such as natural (e.g., flowers, scenes), specialized
(e.g., satellite, medical), or structured (e.g., road scenes).

We present a transfer learning framework using prompt
tuning [34,36]. While the technique has been used for trans-
fer learning of discriminative models for vision tasks [1,26],
to our knowledge, this work appears to be the first to
adopt prompt tuning for transfer learning of image synthe-
sis. Moreover, we propose two technical innovations. First,
a parameter efficient design of prompt token generator that
admits condition variables (e.g., class, instance), a key for
controllable image synthesis yet often neglected in prompt
tuning for discriminative transfer [26, 34]. Second, a mar-
quee header prompt that engineers (e.g., composes and in-
terpolates) learned prompts to enhance generation diversity.

We conduct a large-scale empirical study to understand
the mechanics of generative transfer learning for autoregres-

1Here discriminative models refer to a board of machine learning mod-
els that directly model the conditional distribution of the target variables.

1

ar
X

iv
:2

21
0.

00
99

0v
1

 [
cs

.C
V

]
 3

 O
ct

 2
02

2

Figure 1. Image synthesis by knowledge transfer. Unlike previous works using GANs as source model and test transfer on relatively narrow
visual domains, we transfer knowledge of generative vision transformers [6,14] to a comprehensive list of visual domains, including natural
(e.g., scene, flower), specialized (e.g., satellite, medical), and structured (e.g., road scenes, synthetic, infograph, sketch), as defined by the
visual task adaptation benchmark [71], with a few training images (e.g., as low as 2 images per class).

sive [14, 47] and non-autoregressive [6] generative trans-
formers. To this end, we show that generative vision trans-
formers with prompt tuning outperforms the prior state-of-
the-art held by GANs [53,64] through a vast margin. More-
over, in contrast to prior works [53, 64] limited to show
transfer to a few visual domains, we show the efficacy of
knowledge transfer from pretrained ImageNet models to 19
downstream tasks of diverse visual distributions and vary-
ing amounts of training data in VTAB. Fig. 1 compares vi-
sual domains, showing the great expansion on the varieties
of downstream tasks to what is achieved by previous works.
On the on-manifold distributions on which previous studies
mainly focused, our method slashes the prior state-of-the-
art in FID from 71 to 24 on Places [74] and 86 to 16 on
Animal Face [54] datasets. Moreover, the proposed method
is used to demonstrate the few-shot generative transfer ca-
pabilities (Sec. 4.2), showing extreme data efficiency while
being able to generate images that are realistic and diverse,
while following the target distribution.

In summary, our contributions are as follows:

• We present a generative visual transfer learning frame-
work for vision transformers with prompt tuning [34],
proposing a novel prompt token generator design and
a prompt engineering method for image synthesis.

• We conduct a large-scale empirical study for genera-
tive transfer learning to validate our method on a vari-
ety of visual domains (e.g., VTAB [71]) and scenarios
(e.g., few-shot). To this end, we show state-of-the-art
image synthesis performance.

• To our knowledge, we are the first to employ prompt
tuning for transfer learning of image synthesis, and
provide one-of-the-first substantial empirical evidence
on the necessity of knowledge transfer for data and
compute efficient generative image modeling using the

standard visual transfer learning benchmark.

2. Preliminary

2.1. Generative Vision Transformers

This paper uses generative vision transformers to denote
the vision transformer models for image synthesis. Gener-
ally, there are two types of generative vision transformers:
AutoRegressive (AR) and Non-AutoRegressive (NAR) trans-
formers, both consisting of two stages [14,47]: image quan-
tization and decoding. The first stage is the same between
the two types of models in which the image is quantized into
a grid of discrete tokens by a Vector-Quantized (VQ) auto-
encoder [14, 48, 60, 69]. The VQ encoder quantizes image
patches into integer indices (or tokens) in a codebook. The
2D image is then flattened into a 1D sequence to which a
special token indicating its class label is prepended.

AR and NAR transformers differ in the second stage of
decoding. AR transformers [7], including DALL·E [47],
Taming Transformer [14], NÜWA [67], CogView [12], and
Parti [70], are inspired by the AR language model [3, 39].
They learn an AR decoder on the flattened token sequence
to generate image tokens sequentially based on the previ-
ously generated tokens. As illustrated in Fig. 2, the genera-
tion follows a raster scan ordering, generating tokens from
left to right, line-by-line. Finally, the generated tokens are
mapped to the pixel space using the VQ decoder.

On the other hand, NAR transformers [15,19,33], which
are originally proposed for machine translation, are re-
cently extended to improve the AR image decoding [6, 35,
72]. Unlike their AR counterpart, NAR transformers (e.g.,
MaskGIT [6], Token-Critic [35], BLT [32]) are bidirec-
tional and are trained on the masked modeling proxy task
of BERT [10]. During inference, the model adopts a non-

2

BERT /
AR transformer

Pretrain on ImageNet

BERT /
AR transformer

Flowers, Retinopathy, Kitti, …

Mutable
Frozen

transfer

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8t=0

t=1 t=2 t=100 t=160 t=256t=0

Autoregressive Decoding

Non-autoregressive (parallel) Decoding

Prompt token
Visual token

Figure 2. Our method transfers knowledge from generative vision
transformers (e.g., autoregressive [14] or non-autoregressive [6])
trained on a large dataset to various visual domains by prepending
learnable prompt tokens (green) to visual tokens (blue).

autoregressive decoding method to synthesize an image in a
few steps [6,19,32,35]. As shown in Fig. 2, the NAR trans-
former starts from a blank canvas with all tokens masked
out, and generate an image in 8 steps or so. In each step, it
predicts all tokens in parallel while retaining ones with the
highest prediction scores. The remaining tokens are masked
out and will be predicted in the next iteration until all tokens
are generated. NAR transformers [6, 35] show faster infer-
ence than their AR counterparts (e.g., [14]) while offering
on-par or superior fidelity and diversity.

2.2. Prompt Tuning

Prompt tuning [34, 36] has been introduced recently in
natural language processing as a way of efficiently adapt-
ing pretrained large language models to downstream tasks.
Here, prompt is a sequence of additional tokens prepended
to a token sequence. In prompt engineering [4], their values
are often chosen by heuristic. On the other hand, in prompt
tuning [34, 36], tokens are parameterized by learnable pa-
rameters and their parameters are updated via a gradient de-
scent to adopt transformers to the downstream tasks.

Due to its simplicity and as transformers getting popular,
prompt tuning has been also applied to some vision tasks for
knowledge transfer, e.g., image classification [1, 26], detec-
tion and segmentation [41]. To our knowledge, we appear
to be the first to use prompt tuning for image synthesis.

3. Visual Prompt for Generative Transfer
Our goal is to design a transfer learning framework for

image synthesis using vision transformers. Starting from a
generative vision transformer pretrained on a large dataset
(e.g., ImageNet), we discuss a method to adapt transformers

on various target domains (e.g., VTAB). Sec. 3.1 presents a
visual prompt tuning for AR and NAR transformers. Then,
in Sec. 3.2, we propose a novel prompt, named marquee
header prompt, tailored to NAR transformers to trade-off
generation fidelity and diversity.

3.1. Building and Learning Visual Prompt

Fig. 2 overviews the proposed generative transfer learn-
ing framework. We aim at transferring a generative prior,
parameterized by generative vision transformers, while uti-
lizing the same VQ encoder and decoder trained from the
large source dataset. We employ a prompt tuning [26,34,36]
that uses a sequence of learnable tokens (e.g., green blocks
with a solid line in Fig. 2) to adapt to target distributions,
while leaving transformer parameters frozen. In the follow-
ing sections, we discuss how to learn (Sec. 3.1.1) a prompt
token generator designed for a conditional image generation
(Sec. 3.1.2) and use them for image synthesis (Sec. 3.2).

3.1.1 Learning Visual Prompt

A sequence of prompt tokens is prepended to visual tokens
to guide the pretrained transformer models to the target dis-
tribution. Prompt tuning, learning parameters of token gen-
erator, is done by gradient descent with respective loss func-
tions, while fixing parameters of pretrained transformers.
To be specific, let Z = {zi}H×Wi=1 be a sequence of visual
tokens (i.e., an output of VQ encoder followed by the vec-
torization) and Pφ= {ps;φ}Ss=1 be a sequence of prompt to-
kens. For AR transformer, the loss is given as follows:

LAR = Ex∼PX

[
− logPθ(Z|Pφ)

]
(1)

Pθ(Z|Pφ) =
∏H×W

i=1
Pθ(zi|z<i,Pφ) (2)

For NAR transformer, we follow the loss of MaskGIT [6]:

LNAR = Ex∼PX ,M∼PM

[
− logPθ(ZM |ZM ,Pφ)

]
(3)

Pθ(ZM |ZM ,Pφ) =
∏

i∈M
Pθ(zi|ZM ,Pφ) (4)

where M ⊂{1, ...,H×W} is a set of visual token indices
sampled from a masking schedule distribution PM,M is its
complement, and ZM = {zi}i∈M . Prompt tuning proceeds
by minimizing respective loss functions with respect to the
prompt parameters φwhile fixing transformer parameters θ:

φ∗ = argmin
φ

LAR/NAR (5)

While our focus is at the prompt tuning due to its effec-
tiveness and compute-efficiency for large source models, we
note that the proposed learning framework is amenable with
other transfer learning methods, such as adapter [25] or fine-
tuning [31], with learnable prompts, as shown in Sec. 5.4.

After prompt tuning, we generate visual tokens for image
synthesis by iterative decoding. For AR transformer,

3

(a) Baseline prompt
token generators of
length S conditioned
on class.

Transformer

Transformer

decode

MLPC MLPP

class / instance position

MLPT

B x 1 x P x F 1 x S x P x F

B x S x P x F

S

MLPF

factor

1 x 1 x 1 x F

𝝨F

B x S x P D

(b) The proposed parameter efficient prompt token generator via factorization of
class / instance and position. ⊕ is an element-wise sum, � is an element-wise
product, ΣF is a sum over F dimension. S: sequence length, B: batch size, P :
feature dimension, D: token dimension.

100 101 102

Sequence length (S)

106

107

pa

ra
m

et
er

s

Baseline
Proposed (F=1)
Proposed (F=4)
Proposed (F=16)

(c) Number of parameters with respect
to the sequence length and different
number of factors F .

Figure 3. Prompt token generators and their use in transformer. (a) a straightforward extension of baseline prompt token generators [26,34,
36] with a class condition. When using an MLP with a single dense layer of P units, the number of trainable parameters is P ·(C·S+D).
(b) The proposed parameter efficient prompt token generators that factorizes data dependent conditions (e.g., class, instance) and token
position. Under a similar design choice as baseline models, the number of trainable parameters is P ·(F ·(C+S)+D), which could be
significantly fewer when F�min(C, S). (c) Number of parameters for prompt token generators with respect to the sequence length (S),
while setting P =768, D=768, and C =100 with different number of factors F .

1: for i← 1 to H ×W do
2: ẑi∼Pθ(zi|ẑ<i,Pφ)
3: end for

For NAR model, scheduled parallel decoding [6] is used:
Require: M = {}, T , {n1, ..., nT },

∑T
t=1 nt=H ×W

1: for t← 1 to T do
2: ẑi∼Pθ(zi|ẐM ,Pφ), ∀i∈M
3: M ←M ∪ {arg topki∈M

(
Pθ(zi|ẐM ,Pφ), k=nt

)
}

4: end for
where {n1, ..., nT } is a masking schedule that decides the
number of tokens to decode at each decoding step. We refer
to [6] for details on decoding for NAR transformer. Illus-
trations of decoding steps for both models are in Fig. 2.

3.1.2 Prompt Token Generator Design

For discriminative transfer learning, prompts are designed
without condition variables [26]. For generation, it is ben-
eficial to have condition variables (e.g., class, attribute) for
better control in generation. We accomplish this with rather
a straightforward extension of existing prompt designs us-
ing a class-condition, Pφ(c), as in Fig. 3a.

One caveat of the baseline token generator design is that
the number of learnable parameters increases as the product
of three factors: the number of classes C, the prompt se-
quence length S and the feature dimension P . For example,
when using a prompt of length S=128, hidden P=768 and
embedding dimension D=768, the token generator would
introduce 10.4M parameters forC=100 class conditions, as
in Fig. 3c. The bottleneck occurs at the 3d weight tensor of
size C×S×P . To make it parameter efficient, we propose
a factorized token generator, as in Fig. 3b. Specifically, we
encode class and sequence position index via MLPC and
MLPP with F factors, respectively. The MLP outputs are

element-wise summed, multiplied by an 1d factor vector
from MLPF, and reduced along the factor dimension. The
output is then fed to MLPT to produce a prompt of length S.
As in Fig. 3c, the number of parameters of the proposed ar-
chitecture is greatly reduced, requiring only 0.76M param-
eters, down from 10.4M, for a prompt of length 128 when
F =1.2 An implementation of the proposed token genera-
tor in Flax [22] is in Fig. 13 of Appendix. We empirically
find that F =1 is sufficient for NAR transformers, demon-
strating extreme parameter efficiency. For AR transformers,
we need extra capacity and use F =16.

Moreover, we build a new type of prompt tokens condi-
tioned on individual data instances, inspired by the instance-
conditioned GAN [5]. We assign each data a unique index
and map it into a distinct embedding via MLPC. When both
class label and instance index are used, instance index is
simply treated as an extra class, indexed from C. To train
the model, we sample between class label and instance in-
dex. As we explain below in Sec. 3.2, instance conditioned
prompts add more fine-grained control on generation.

3.2. Engineering Learned Prompts

An interesting aspect of generative transformers in con-
trast to GANs is their iterative decoding. For example, as
illustrated in Fig. 2, AR transformers [14] decode tokens se-
quentially given previously decoded tokens, and NAR trans-
formers [6] use a scheduled parallel decoding.

Given the wealth of learned prompts conditioned on the
class and instance proposed in Sec. 3.1, we propose a novel
prompt engineering strategy, a “Marquee Header” prompt,
of the iterative transformer decoding, for enhancing the gen-
eration diversity. The idea is simple – similarly to the latent

2The proposed factorization can be extended to incorporate the “depth”
position of deep visual prompt [26] to reduce the number of parameters.

4

(a) Image synthesis using instance-conditioned prompts.

(b) Image synthesis using a marquee header prompt between instance (blue) and class (red) conditioned prompts.

(c) Image synthesis using a marquee header prompt between instance-conditioned prompts (blue and red).

Figure 4. Iterative decoding of NAR transformers. (4a) instance prompts generate images of high-fidelity but with low diversity. Marquee
header prompts enhance generation diversity by interpolating (4b) from instance to class prompts or (4c) between instance prompts.

variable interpolation of GANs, we interpolate the learned
prompt representations (e.g., outputs of MLPC). Yet, due
to the iterative decoding, the interpolation between prompts
is carried out over multiple decoding steps. This is illus-
trated in Fig. 4b, where we start the decoding process us-
ing instance-conditioned prompts (blue header) but gradu-
ally transition to a class-conditioned prompt (red header)
over decoding steps. Compared to the generation in Fig. 4a
where we use instance-conditioned prompts all along, the
proposed prompt engineering strategy enhances the gener-
ation diversity while being controlled in that synthesized
images follow certain characteristics (e.g., pose, color pat-
tern, hairiness) of reference instances. In addition, it is also
plausible to construct a marquee header prompt between
instance-conditioned prompts, as in Fig. 4c.

We provide a marquee header prompt formulation:

PMT(t) = (1− wt)PMT1 + wtPMT2 (6)

wt = min
{(t− 1

Tcutoff − 1

)2
, 1
}

(7)

where t=1, ..., T is a decoding step, Tcutoff ≤T is a cutoff
step, and PMTi is a prompt representation (e.g., an output
of MLPC). The schedule in Eq. (7) makes a smooth transi-
tion of prompts from PMT1 to PMT2. Note that there could

be various marquee header prompt formulations, which we
leave their investigations as a future work.

4. Experiments

We evaluate the efficacy of the generative transfer learn-
ing on diverse visual domains and varying amounts of train-
ing data and compare with existing methods. In Sec. 4.1, we
test on visual task adaptation benchmark (VTAB) [71] and
demonstrate state-of-the-art image generation performance
with knowledge transfer. In Sec. 4.2, we verify our method
on diverse few-shot transfer learning tasks.

4.1. Generative Transfer on VTAB

Dataset. Towards developing a generative transfer method
generalizable across domains and distributions, we employ
the visual task adaptation benchmark (VTAB) [71] – a suite
of 19 visual recognition tasks based on 16 datasets. It covers
diverse image domains (e.g., natural, structured, and spe-
cialized such as medical or satellite imagery) and tasks (e.g.,
object and scene recognition, distance classification, count-
ing), making it a valuable asset not only for discriminative,
but also for generative transfer learning. The dataset infor-
mation is provided in Appendix B.1.1.

5

Model (# tr params) Mean C101 Flowers Pet DTD Kitti SUN EuroSAT Resisc

MineGAN [64] (88M) 151.5 102.4 132.1 130.1 87.4 117.9 77.5 111.5 81.0
cGANTransfer [53] (105M) 85.1 89.6 61.6 48.6 70.3 48.9 31.1 45.6 50.3

Non-Autoregressive

Prompt (S=1) (0.67M) 53.7 13.5 13.8 11.9 25.8 32.3 7.3 45.9 28.5
Prompt (S=16) (0.68M) 39.9 12.7 13.2 11.1 26.0 30.0 7.4 35.8 24.9
Prompt (S=128) (0.76M) 36.4 12.9 13.4 10.9 25.9 29.9 7.7 38.4 24.8
Scratch (172M) 42.7 72.7 57.2 70.3 66.1 33.8 9.2 39.5 32.0

Autoregressive

Prompt (S=1) (0.86M) 58.4 45.5 28.9 42.4 37.1 66.9 18.9 37.3 35.1
Prompt (S=16) (0.88M) 45.8 41.4 19.6 36.6 33.4 41.4 16.4 32.6 28.8
Prompt (S=256) (1.06M) 39.0 39.6 17.3 34.9 32.5 37.1 15.0 29.6 26.7
Prompt (S=256, F =16) (5.16M) 36.9 27.2 14.1 27.2 30.0 34.6 12.8 26.4 22.2
Scratch (306M) 39.6 76.0 56.1 52.5 92.7 31.6 13.5 19.4 29.5

Table 1. FIDs (lower the better) of image generation models on VTAB tasks. The number of trainable parameters (second column) are
computed assuming 100 classes. The mean FID over 19 VTAB tasks (third column) and those for dataset with a small to mid-scale training
data are reported. Complete results are in Appendix B.1.3. The best and the second best results are highlighted in each column.

(a) SUN397 (FID=7.7; NAR + Prompt) (b) DTD (FID=25.9; NAR + Prompt) (c) Resisc (FID=24.8; NAR + Prompt)

(d) SUN397 (FID=12.8; AR + Prompt) (e) DTD (FID=30.0; AR + Prompt) (f) Resisc: (FID=22.2; AR + Prompt)

Figure 5. Class conditional generation using NAR (top; S=128) and AR (bottom; S=256, F=16) transformers with prompt tuning.

Setting. We study class-conditional image generation mod-
els on the VTAB (full) tasks. Class-conditional prompts are
trained on the “train” split, using the same hyperparameters
across tasks as provided in Appendix B.1.2.

We investigate generative transfer of AR and NAR trans-
formers using class-conditional Taming Transformer [14]
and MaskGIT [6], respectively, trained on 256×256 images
of ImageNet dataset as source models. Both models contain
24 transformer layers, comprised of 306M and 172M model
parameters, respectively.

Baselines. We compare our method with GAN-based gen-
erative transfer learning methods, including MineGAN [64]
and cGANTransfer [53]. Note that both of these algorithms
use a BigGAN [2] trained on ImageNet as a source. It is
worth noting that the BigGAN model is trained on 128×128

images and its validation FID on ImageNet is 7.4. This is
better than that of our pretrained AR transformer (18.7) and
almost on par with that of NAR transformer (6.2).

We further compare with generative transformers trained
from scratch on VTAB. To highlight the compute efficiency,
models are trained with a comparable compute budget (e.g.,
same number of train epochs) to transfer learning models.
Hyperparameters are provided in Appendix B.1.2. We pro-
vide more in-depth analysis without compute budget restric-
tions in Sec. 5.4.

Evaluation. We use Frechet Inception Distance (FID) [24]
as a quantitative metric. We generate 20k images from each
model and compare with images from a respective dataset.
We sample 20k images if the dataset is larger than 20k.

Results. We report FIDs of models trained and evaluated

6

on VTAB tasks in Tab. 1 averaged over 3 runs. Due to lim-
ited space, we report results on tasks with small to mid-scale
train set in addition to the mean FID over 19 datasets. Com-
plete results are given in Appendix B.1.3. In addition, we
provide images generated by various transfer learning meth-
ods for thorough visual inspection. See Appendix B.1 for
evaluation details and more extensive comparison. We see
that prompt tuning is effective for both AR and NAR gener-
ative transformers, especially when the number of training
images is small (e.g., ≤ 10k). Between AR and NAR trans-
formers, we find that NAR model transfers better than the
AR counterpart. Nevertheless, both generative transformers
with class-conditional prompt tuning show significant gain
in performance when compared to GAN-based baselines.

We see that the prompt tuning of generative transform-
ers benefits greatly from a long prompt, reducing mean FID
from 53.7 to 36.4 by increasing the length from 1 to 128.
This is achieved by only adding less than 0.1M parameters,
thanks to our parameter-efficient design of the prompt token
generator. Nevertheless, this comes at an increased cost at
generation time due to increased sequence length. Empiri-
cally, we find that using 128 tokens for the prompt increases
the overall generation time by 25%, as shown in Tab. 4.

AR transformers also benefit from the longer prompt. On
the other hand, AR transformers generally requires prompts
with more learnable parameters, which is achieved by in-
creasing the number of factors. The performance is still on
par with that achievable with the baseline prompt, while us-
ing significantly less number of parameters (5.6M instead
of 20.5M), as shown in Sec. 5.3.

In Fig. 5, we show generated images using 128 prompt
tokens for NAR transformers and 256 prompt tokens (with
F =16) for AR transformers on a few VTAB tasks. More
generated images are in Appendix B.1.4. Despite learning
less than 0.5% of the transformer parameters, the learned
prompts are able to change the generation process of pre-
trained generative transformers to follow the target distribu-
tion.

4.2. Few-shot Generative Transfer

After validation on VTAB, we delve deeper into a few-
shot generative transfer, where the number of training im-
ages is further reduced. We limit our study to transfer of an
NAR transformer, i.e., MaskGIT [6], but with more compar-
isons to existing few-shot image generation models, either
with [53, 64] or without [56, 73] knowledge transfer.

Dataset. We study few-shot generative transfer learning on
Places [74], ImageNet [9], and Animal Face [54]. Follow-
ing [53, 64], for Places and ImageNet, we select 5 classes3

and use 500 images per class for training. For Animal Face,

3Cock, Tape player, Broccoli, Fire engine, Harvester for ImageNet, and
Alley, Arch, Art gallery, Auditorium, Ballroom for Places.

Dataset ImageNet Places Animal Face Dog Face Cat Face
(shot) (500) (500) (100) (389) (160)

MineGAN [64] 61.8† 82.3† – 93.0∗ 54.5∗

cGANTransfer [53] – 71.1‡ 85.9‡ – –
DiffAug [73] – – – 58.5∗ 42.4∗

LeCam GAN [56] – – – 54.9∗ 34.2∗

Ours (class) 16.9 24.2 16.3 65.4 40.2
Ours (instance) 19.6 19.5 13.3 26.0 31.2

Table 2. FIDs of image generation models on few-shot benchmark.
Numbers with †, ‡, ∗ are from [64], [53], [56], respectively.

we consider two scenarios – following [53], we use 100 im-
ages per class for training from 20 classes (denoted as “An-
imal Face” in Tab. 2); alternatively, following [56, 73], we
use all images of dog (389) and cat (160) classes (denoted
as “dog face” and “cat face” in Tab. 2) for training.

Moreover, we test our methods to more challenging off-
manifold target tasks on DomainNet [45] Infograph and Cli-
part (345 classes), and ImageNet sketch (1000 classes) [63]
with as low as 2 training images per class.

Setting. We study a class-and-instance conditional genera-
tive transfer as in Sec. 3.1.2. Class-and-instance conditional
prompts are particularly suitable for few-shot scenarios as
there are only a limited number of training images.

Baselines. GAN-based generative transfer learning meth-
ods, e.g., MineGAN [64] and cGANTransfer [53], are used
as baselines. Moreover, we compare to few-shot image gen-
eration models, e.g., DiffAug [73] and LeCam GAN [56].

Evaluation. We report FIDs using 10k generated images,
except for experiments on dog and cat faces, where we gen-
erate 5k images following [73]. For Places, ImageNet, and
Animal Face, we use an entire training data (i.e., 2500 for
Places and ImageNet, 2000 for Animal Face, 389 and 160
for dog and cat faces, respectively) for the reference distri-
bution. We sample 10k images for the reference distribution
to compute FID for DomainNet and ImageNet sketch.

Results. In Tab. 2, we report FIDs of our proposed method
using prompts of S=128. When conditioned on the class,
our method improves FIDs upon existing generative transfer
learning methods. When comparing with few-shot genera-
tion methods on dog and cat face datasets, our method with
a class condition slightly under-performs, likely due to that
dataset having one class. When conditioned on instances,
our models outperform all GAN-based few-shot generation
models. We provide visualizations in Appendix B.2.1.

We visualize generated images conditioned on the class
by our models in Fig. 6. We show 2 (and only) training data
for each class in red boxes. We observe that, though images
in these datasets are highly artificial and their distributions
are different from the source dataset, our method is able to
synthesize images from respective target distributions well.
Moreover, as clearly seen from Fig. 6, our models do more

7

(a) DomainNet Clipart (2 shot; FID=22.4) (b) DomainNet Infograph (2 shot; FID=20.6) (c) ImageNet Sketch (2 shot; FID=14.4)

Figure 6. Class conditional generation of few-shot transfer models. Images in red boxes are two training images of each class.

than simply memorizing the training data.

Data Efficiency. We conduct experiments with less training
images to investigate the data efficiency. We train models
on 5, 10, 50 and 100 images per class for ImageNet, Places
and Animal Face datasets. We use a class-condition for im-
age generation. The same number of images is used for the
reference set to make FIDs comparable across settings.

Results are in Fig. 7. Our method shows far superior data
efficiency, achieving substantially lower FIDs with only 5
training images per class, to GAN-based transfer learning
methods trained with 20 or 100 times more images per class.
We find that using long prompts is not favorable when the
number of training images is too small (e.g., less than 10
images per class for ImageNet and Places, 50 in total), as
models start to overfit to a few images in the train set. When
the total number of images is larger than 250, we find that
using a long prompt is still beneficial.

Enhancing Generation Diversity via Prompt Engineer-
ing. As in Sec. 3.2 and Figs. 4b and 4c, our model offers a
way to enhance generation diversity by composing prompts.
We report quantitative metrics to support our claim.

We conduct experiments on the dog and cat faces dataset
using marquee header prompts with different Tcutoff values.
For the fidelity metric, we compute the FID. To measure the
diversity, we follow [42] and report a intra-cluster pairwise
LPIPS distance, where we generate 5k samples and map
them into one of training images.4

Results are shown in Fig. 8. Ideally, we expect a model
with low FID and high intra-cluster LPIPS scores (e.g., yel-
low star at top-left corner). When generating samples using
a class-condition (red square), we generate diverse images,
but with relatively poor fidelity. On the other hand, when
conditioned on data instances (green dot), we improve the
FID by a large margin, but at the cost of reduced diversity.
Instance to class Marquee header prompts (blue) allow to

4We use a pixel-wise L2 distance for computation efficiency instead of
LPIPS distance in [42].

5 10 50 100 500
image/class

20

30

40

50

60

FI
D

MineGAN
Prompt (S=1)
Prompt (S=128)

(a) ImageNet

5 10 50 100 500
image/class

20

30

40

50

60

70

80

90
MineGAN
cGANTr.
Prompt (S=1)
Prompt (S=128)

(b) Places

5 10 50 100
image/class

20

30

40

50

60

70

80

90
cGANTr.
Prompt (S=1)
Prompt (S=128)

(c) Animal Face

Figure 7. FIDs for models trained with varying numbers of images
per class for class-conditional few-shot generative transfer.

(a) Dog Faces (b) Cat Faces

Figure 8. Marquee header prompt shows clear tradeoff between
fidelity (FID) and diversity (LPIPS) when interpolating from in-
stance to class (blue). It shows a better tradeoff when interpolating
between instances (orange), achieving low FID and high LPIPS.

control the generation diversity and fidelity. Moreover, in-
stance to instance Marquee header prompts, which interpo-
lates an instance prompt to another randomly selected in-
stance prompt, shows much better tradeoff between fidelity
and diversity.

8

dataset: oxford_flowers102, length: 1, embed: 32,
word: 0.848, token:0.851

Code
Text

(a) S = 1 (NMI=0.848)

dataset: oxford_flowers102, length: 128,
embed: 32, word: 0.800, token:0.820

(b) S = 128 (NMI=0.800)

Figure 9. t-SNE plots of instance-conditioned prompt represen-
tations on flowers dataset. Points of the same color are from the
same class. We also report normalized mutual information (NMI)
score by clustering prompt representations using KMeans.

5. Analysis and Discussion
With a successful demonstration of the power of prompt

tuning for generative transfer learning, we further study
to understand prompt representations (Sec. 5.1, Sec. 5.2)
and conduct an ablation study regarding design choices
of prompt token generator (Sec. 5.3) and transfer learning
(Sec. 5.4).

5.1. What does the Prompt Learn?

To understand what the prompt has learned, we study
some properties of learned prompt representations. For
this study, we train instance conditioned prompt models on
flowers dataset of VTAB, with S=1 and 128. Note that no
class information is used for training in this experiment.

We draw t-SNE plots [61] of prompts in Fig. 9. Here, we
opt to use an output of an MLPC as a prompt representation
instead of a token sequence (e.g., output of an MLPT) due
to its low dimensionality. We see in Fig. 9a that points of
the same color (i.e., same class) are grouped together, im-
plying that the prompt representations learn discriminative
class information. While we see a similar trend in Fig. 9b,
there are clusters crowded with points of various colors. We
quantify our observation using a normalized mutual infor-
mation (NMI) computed by clustering prompts. Clustering
is more consistent with the ground-truth class labels with
higher NMIs. The model with S=1 achieves 0.848 and the
one with S=128 gets 0.800. Note that these are even better
results than the number obtained using an embedding from
ImageNet pretrained ResNet-50 [21] (NMI=0.734).

5.2. Adaptation-Diversity Trade-Off

We study prompts with various lengths, but on a single
image. We show generated images of models with different
lengths in Fig. 10. With short prompts, the model produces
diverse but less detailed images. On the other hand, a long
prompt model generates images of a higher quality, more
faithful to the training image, but less diverse. This implies

1 2 4 8 16 128

Figure 10. A single training image in red box and those generated
by models using prompts of various lengths from 1 to 128.

NAR # params Small Medium Large Natural Struct. Spec.

S=16

baseline 1.81M 18.6 34.6 89.1 23.8 50.9 41.7
F=1 0.68M 18.6 36.1 89.5 25.2 51.9 41.5
F=4 0.95M 18.6 35.5 88.4 24.4 51.5 41.4
F=16 2.02M 18.5 35.0 86.8 24.3 50.8 40.4

S=128

baseline 10.4M 18.2 30.8 86.4 22.0 46.9 39.9
F=1 0.76M 18.5 30.6 88.9 22.5 47.1 40.5
F=4 1.30M 18.1 31.5 88.0 23.3 48.2 38.0
F=16 3.39M 17.9 30.8 86.5 22.6 47.4 37.7

AR # params Small Medium Large Natural Struct. Spec.

S=16

baseline 2.02M 30.5 41.9 82.7 28.5 61.9 41.7
F=1 0.88M 34.5 43.3 83.9 32.3 62.9 42.9
F=4 1.14M 31.9 42.3 82.7 29.9 62.0 42.0
F=16 2.21M 31.2 41.9 82.6 28.9 61.9 41.6

S=256

baseline 20.4M 25.7 32.7 71.6 23.7 52.1 35.9
F=1 1.06M 32.3 33.5 70.5 29.0 49.1 36.4
F=4 1.88M 31.2 41.9 82.6 28.9 61.9 41.6
F=16 5.16M 26.6 32.6 69.9 24.5 48.9 34.6

Table 3. Ablation on prompt token generators for (top) NAR and
(bottom) AR transformers on VTAB. We report FIDs averaged by
different categorizations of tasks.

that the short prompt learns concepts, while the long prompt
learns fine details of training data. This is in line with our
results in Sec. 5.1 where short prompts learn more discrim-
inative information than long prompts.

In Fig. 11, we visualize images generated by models of
Sec. 5.1. Compared to images in Fig. 11a whose model is
trained with S=1, we clearly see in Fig. 11b that the model
trained with a long prompt generates images that are more
consistent with training instances.

5.3. Ablation on Prompt Token Generators

One of our technical novelties is the parameter-efficient
design of the prompt token generator as in Fig. 3b. We pro-
vide in-depth study on different prompt token generators.

Tab. 3 summarizes results. The key takeaway is that the
performance, measured in FIDs, for models using prompts
with the proposed factorization closely matches those us-
ing the baseline, non-factorized prompts. This is particu-
larly true for NAR transformers. On the other hand, AR
transformers still prefers prompt generators with more pa-
rameters. Nevertheless, we achieve on par results with the
baseline using less than 30% of parameters.

9

(a) Oxford Flowers, “Grape hyacinth” (S = 1) (b) Oxford Flowers, “Grape hyacinth” (S = 128)

Figure 11. Instance-conditioned generation. For each row, leftmost image in red box is a training image and next five images are gener-
ated. When instance conditioned, generated images follow finer-grained details of the reference training image, such as color, shape, or
background, beyond class information. Adaptation and diversity could be further controlled by the prompt length.

101 102 103

Train epochs

20

30

40

50

60

70

80

90

100

FI
D

prompt
scratch
adapter
finetune

(a) VTAB small (<10k)

101 102 103

Train epochs

20

30

40

50

60

70

80

90

100

FI
D

prompt
scratch
adapter
finetune

(b) VTAB medium (<100k)

101 102 103

Train epochs

20

30

40

50

60

70

80

90

100

FI
D

prompt
scratch
adapter
finetune

(c) VTAB large (>100k)

Figure 12. FID vs the number of train epochs for various learning methods for transformer-based sequence models. Knowledge transfer is
essential for faster convergence when training data is small.

5.4. Beyond Prompt Tuning for Generative Transfer

We have studied applying a prompt tuning to learn gen-
erative vision transformers via knowledge transfer. We have
seen promising results, e.g., excelling state-of-the-art GAN-
based transfer learning methods at generative modeling. We
also demonstrate the importance of knowledge transfer for
fast and efficient learning of generative models from small
training data. Despite the success, prompt tuning is not the
only method for learning transformer-based sequence mod-
els. For the completeness, we conduct an extended study for
various learning methods of generative vision transformers.

To that end, we evaluate adapter tuning and fine-tuning
in addition to the prompt tuning and learning from scratch.
Adapter tuning [25] introduces learnable adapter modules
to each transformer block. Fine-tuning unfreezes pretrained
weights and updates them. All models are trained using the
same loss (e.g., masked visual token model loss [6] for NAR
transformer). As we are interested in class-conditional gen-
erative models, we also introduce class-conditional prompts
of length 1 that are randomly initialized for adapter tuning
and fine-tuning.

For experiments, we vary the number of training epochs

from 10 to 3200,5 as training efficiency is one of the key dif-
ferentiating factors across various learning strategies. For
prompt tuning, we use 128 prompt tokens with a single fac-
tor. For adapter tuning, we use 64 hidden units for adapter
modules. We report the number of trainable parameters as-
suming 100 classes, train time per step and generation time
comparisons in Tab. 4. Prompt tuning shows the best pa-
rameter and train time efficiency, where the number of train-
able parameters is less than 0.5% of those of fine-tuning and
learning from scratch. On the other hand, due to the longer
sequence, it takes more time for generation than those mod-
els with a single class token. Adapter tuning, together with
a tunable class-conditional prompt, turns out to be a method
with a good balance, with relatively few trainable parame-
ters and efficiency at both train and test time.

Fig. 12 compares the generation performance in FID on
VTAB. We see that models with a knowledge transfer con-
verge faster than the ones without a transfer. For example, it
requires almost 800 epochs for models learned from scratch
to reach FIDs of the prompt tuning models trained for 10
epochs for tasks with a small data. Fine-tuning also adapts

5We limit the maximum number of training steps to 500K to finish
model training within a reasonable time window.

10

params train / step generation

Prompt tuning (S=128) 0.76M 1× 1×
Adapter tuning 5.43M 1.04× 0.84×
Fine-tuning, Scratch 172M 1.67× 0.80×

Table 4. Qualitative comparison (e.g., number of trainable param-
eters, train and generation time) among various learning strategies
based on NAR transformers.

to new data distributions quickly, though it takes more time
per step for model training. As in Fig. 12a, for tasks with
a small training data, fine-tuning shows the best FIDs. On
the other hand, we find that fine-tuning behaves unstable
on some datasets (e.g., smallnorb), and the performance di-
verges as training goes, as in Fig. 12b. Complete FID results
are in Tab. 7 of Appendix. To our surprise, learning from
scratch performs well even for tasks with a small training
data when given sufficient compute resources and time.

Finally, we’d like to note that there is no single method
that wins against the rest as each method has its own advan-
tage. For example, for applications where the small number
of parameter is critical, prompt tuning should be preferred
despite slightly worse generation quality. Also, prompt and
adapter tuning are preferred when there are many datasets
and tasks as transformer parameters are shared across tasks.

6. Related Work

Transfer learning [43,55,66,75] is a method for improv-
ing the performance of downstream tasks using knowledge
from the source domain and task. It is shown to be partic-
ularly effective when the amount of training data is limited
for downstream tasks. Knowledge transfer of deep neural
networks has been realized in various forms, such as linear
probing [8, 23], fine-tuning [31, 46], or adapter [25, 49, 50].
Recently, prompt tuning [34, 36, 37] has emerged as a pow-
erful tool for transfer learning of transformer-based large
language models in NLP. Since the introduction of Vision
Transformer [13], such approach has been studied for vision
tasks as well [1, 26]. While previous works have shown ef-
fectiveness of prompt tuning for discriminative tasks (e.g.,
classification), we apply the technique for image synthesis.

Generative models have been extensively studied for im-
age synthesis, including variational autoencoder [30,57,59],
diffusion [11, 51] and autoregressive [44, 58, 62] models. A
large volume of progress has been made around the genera-
tive adversarial network (GAN) [18] thanks to its ability at
synthesizing high-fidelity images [2, 27, 28, 52]. As such,
generative knowledge transfer has been studied to transfer
knowledge of pretrained GAN models. TransferGAN [65],
following a usual practice by fine-tune on the target dataset,
has demonstrated transferring knowledge from pretraining
improves the performance when training with limited data.

Freezing a few layers of discriminator [40] further improves
while stabilizing the training process. MineGAN [64] intro-
duces a miner, which projects random noise into the embed-
ding space of the pretrained generator, and trains it with dis-
criminator while fixing generator parameters. cGANTrans-
fer [53] makes explicit transfer of knowledge on classes of
the source dataset to new classes. Albeit showing improve-
ment, these methods still require careful training (e.g., early
stopping) and have evaluated on a few datasets. In our work,
we extensively test methods on a wide variety of visual do-
mains (e.g., VTAB) and show improvement by a large mar-
gin over existing GAN-based generative transfer methods.

7. Conclusion
We present a method for learning image generation mod-

els from diverse data distributions and varying amount of
training data via knowledge transfer from the source model
trained on a large dataset. A simple modification on prompt
token designs allows to learn a parameter and compute effi-
cient class and instance conditional image generation mod-
els of autoregressive and non-autoregressive vision trans-
formers. Comprehensive experimental results of image syn-
thesis are provided across diverse visual domains, tasks, and
the number of training images. In addition, we show how to
use learned prompts for novel image synthesis in the form of
marquee header prompts, which is particularly useful when
synthesizing images using generative models learned from
a few images.

Acknowledgment
We thank Brian Lester for helpful discussion on prompt tun-
ing, Boqing Gong and David Salesin for their feedback on
the manuscript.

11

References
[1] Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and

Phillip Isola. Visual prompting: Modifying pixel space to
adapt pre-trained models. arXiv preprint arXiv:2203.17274,
2022. 1, 3, 11

[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
In International Conference on Learning Representations,
2018. 1, 6, 11

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In NeurIPS, 2020. 2

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901, 2020. 3

[5] Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michal
Drozdzal, and Adriana Romero Soriano. Instance-
conditioned gan. Advances in Neural Information Process-
ing Systems, 34:27517–27529, 2021. 4

[6] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T
Freeman. Maskgit: Masked generative image transformer.
arXiv preprint arXiv:2202.04200, 2022. 1, 2, 3, 4, 6, 7, 10

[7] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In International Conference on Ma-
chine Learning, pages 1691–1703. PMLR, 2020. 2

[8] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank
Wang, and Jia-Bin Huang. A closer look at few-shot classi-
fication. In International Conference on Learning Represen-
tations, 2018. 11

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 7

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 2

[11] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Informa-
tion Processing Systems, 34, 2021. 1, 11

[12] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao,
Hongxia Yang, et al. Cogview: Mastering text-to-image gen-
eration via transformers. Advances in Neural Information
Processing Systems, 34:19822–19835, 2021. 1, 2

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 11

[14] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12873–12883, 2021. 1, 2, 3,
4, 6

[15] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke
Zettlemoyer. Mask-predict: Parallel decoding of conditional
masked language models. In EMNLP-IJCNLP, 2019. 2

[16] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 1

[17] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014. 1

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 1, 11

[19] Jiatao Gu and Xiang Kong. Fully non-autoregressive neural
machine translation: Tricks of the trade. In Findings of ACL-
IJCNLP, 2021. 2, 3

[20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
9729–9738, 2020. 1

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 9

[22] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Rit-
ter, Bertrand Rondepierre, Andreas Steiner, and Marc van
Zee. Flax: A neural network library and ecosystem for JAX,
2020. 4, 15

[23] Olivier Henaff. Data-efficient image recognition with con-
trastive predictive coding. In International conference on
machine learning, pages 4182–4192. PMLR, 2020. 11

[24] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 6

[25] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In International Conference on Machine
Learning, pages 2790–2799. PMLR, 2019. 3, 10, 11, 15

[26] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. arXiv preprint arXiv:2203.12119, 2022.
1, 3, 4, 11

12

[27] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019. 11

[28] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8110–8119, 2020. 11

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 15

[30] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 11

[31] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan
Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.
Big transfer (bit): General visual representation learning. In
European conference on computer vision, pages 491–507.
Springer, 2020. 1, 3, 11, 15

[32] Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan
Hao, Haifeng Gong, and Irfan Essa. Blt: Bidirectional lay-
out transformer for controllable layout generation. arXiv
preprint arXiv:2112.05112, 2021. 2, 3

[33] Xiang Kong, Zhisong Zhang, and Eduard Hovy. Incorpo-
rating a local translation mechanism into non-autoregressive
translation. arXiv preprint arXiv:2011.06132, 2020. 2

[34] Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. In Proceed-
ings of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 3045–3059, 2021. 1, 2, 3,
4, 11

[35] Jose Lezama, Huiwen Chang, Lu Jiang, and Irfan Essa. Im-
proved masked image generation with token-critic. In ECCV,
2022. 2, 3

[36] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimiz-
ing continuous prompts for generation. arXiv preprint
arXiv:2101.00190, 2021. 1, 3, 4, 11

[37] Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin
Yang, and Jie Tang. P-tuning v2: Prompt tuning can be com-
parable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021. 11

[38] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 15

[39] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. Recurrent neural network
based language model. In Interspeech, volume 2, pages
1045–1048. Makuhari, 2010. 2

[40] Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Freeze the dis-
criminator: a simple baseline for fine-tuning gans. arXiv
preprint arXiv:2002.10964, 2020. 11

[41] Xing Nie, Bolin Ni, Jianlong Chang, Gaomeng Meng, Chun-
lei Huo, Zhaoxiang Zhang, Shiming Xiang, Qi Tian, and
Chunhong Pan. Pro-tuning: Unified prompt tuning for vi-
sion tasks. arXiv preprint arXiv:2207.14381, 2022. 3

[42] Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A Efros,
Yong Jae Lee, Eli Shechtman, and Richard Zhang. Few-shot

image generation via cross-domain correspondence. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10743–10752, 2021. 1, 8

[43] Sinno Jialin Pan and Qiang Yang. A survey on transfer learn-
ing. IEEE Transactions on knowledge and data engineering,
22(10):1345–1359, 2009. 11

[44] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
age transformer. In International conference on machine
learning, pages 4055–4064. PMLR, 2018. 11

[45] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1406–1415,
2019. 7

[46] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. Exploring the limits of transfer learn-
ing with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683, 2019. 11

[47] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In Marina Meila and
Tong Zhang, editors, ICML, 2021. 1, 2

[48] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Gener-
ating diverse high-fidelity images with vq-vae-2. Advances
in neural information processing systems, 32, 2019. 2

[49] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Learning multiple visual domains with residual adapters. Ad-
vances in neural information processing systems, 30, 2017.
11

[50] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Efficient parametrization of multi-domain deep neural net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8119–8127, 2018. 11

[51] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 11

[52] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-
xl: Scaling stylegan to large diverse datasets. arXiv preprint
arXiv:2202.00273, 1, 2022. 11

[53] Mohamad Shahbazi, Zhiwu Huang, Danda Pani Paudel,
Ajad Chhatkuli, and Luc Van Gool. Efficient conditional gan
transfer with knowledge propagation across classes. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12167–12176, 2021. 1, 2, 6,
7, 11, 15

[54] Zhangzhang Si and Song-Chun Zhu. Learning hybrid image
templates (hit) by information projection. IEEE Transactions
on pattern analysis and machine intelligence, 34(7):1354–
1367, 2011. 2, 7

[55] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang,
Chao Yang, and Chunfang Liu. A survey on deep transfer
learning. In International conference on artificial neural net-
works, pages 270–279. Springer, 2018. 11

13

[56] Hung-Yu Tseng, Lu Jiang, Ce Liu, Ming-Hsuan Yang, and
Weilong Yang. Regularizing generative adversarial networks
under limited data. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7921–7931, 2021. 1, 7

[57] Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical vari-
ational autoencoder. Advances in Neural Information Pro-
cessing Systems, 33:19667–19679, 2020. 11

[58] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt,
Oriol Vinyals, Alex Graves, et al. Conditional image genera-
tion with pixelcnn decoders. Advances in neural information
processing systems, 29, 2016. 11

[59] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 11

[60] Aäron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural discrete representation learning.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, editors, NeurIPS, 2017. 1, 2

[61] Laurens Van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(11), 2008. 9

[62] Aaron Van Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. In
International conference on machine learning, pages
1747–1756. PMLR, 2016. 1, 11

[63] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P
Xing. Learning robust global representations by penalizing
local predictive power. Advances in Neural Information Pro-
cessing Systems, 32, 2019. 7

[64] Yaxing Wang, Abel Gonzalez-Garcia, David Berga, Luis
Herranz, Fahad Shahbaz Khan, and Joost van de Weijer.
Minegan: effective knowledge transfer from gans to target
domains with few images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 9332–9341, 2020. 1, 2, 6, 7, 11, 15

[65] Yaxing Wang, Chenshen Wu, Luis Herranz, Joost van de
Weijer, Abel Gonzalez-Garcia, and Bogdan Raducanu.
Transferring gans: generating images from limited data. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 218–234, 2018. 11

[66] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A
survey of transfer learning. Journal of Big data, 3(1):1–40,
2016. 11

[67] Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang,
Daxin Jiang, and Nan Duan. N\” uwa: Visual synthesis
pre-training for neural visual world creation. arXiv preprint
arXiv:2111.12417, 2021. 1, 2

[68] Ceyuan Yang, Yujun Shen, Zhiyi Zhang, Yinghao Xu, Jia-
peng Zhu, Zhirong Wu, and Bolei Zhou. One-shot generative
domain adaptation. arXiv preprint arXiv:2111.09876, 2021.
1

[69] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang,
James Qin, Alexander Ku, Yuanzhong Xu, Jason Baldridge,
and Yonghui Wu. Vector-quantized image modeling with
improved VQGAN. arXiv preprint arXiv:2110.04627, 2021.
2

[70] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-
fei Yang, Burcu Karagol Ayan, et al. Scaling autoregres-
sive models for content-rich text-to-image generation. arXiv
preprint arXiv:2206.10789, 2022. 1, 2

[71] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov,
Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djo-
longa, Andre Susano Pinto, Maxim Neumann, Alexey Doso-
vitskiy, et al. A large-scale study of representation learning
with the visual task adaptation benchmark. arXiv preprint
arXiv:1910.04867, 2019. 1, 2, 5

[72] Zhu Zhang, Jianxin Ma, Chang Zhou, Rui Men, Zhikang Li,
Ming Ding, Jie Tang, Jingren Zhou, and Hongxia Yang. M6-
ufc: Unifying multi-modal controls for conditional image
synthesis. arXiv preprint arXiv:2105.14211, 2021. 2

[73] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song
Han. Differentiable augmentation for data-efficient gan
training. Advances in Neural Information Processing Sys-
tems, 33:7559–7570, 2020. 1, 7

[74] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Tor-
ralba, and Aude Oliva. Learning deep features for scene
recognition using places database. Advances in neural in-
formation processing systems, 27, 2014. 2, 7

[75] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He. A
comprehensive survey on transfer learning. Proceedings of
the IEEE, 109(1):43–76, 2020. 11

14

1 import flax.linen as nn
2 import jax.numpy as jnp
3

4 class TokenGenerator(nn.Module):
5 n_token: int # Number of token (S)
6 n_class: int # Number of class (C)
7 n_factor: int # Number of factors (F)
8 d_embed: int # Embed dimension (P)
9 d_token: int # Token dimension (D)

10

11 @nn.compact
12 def __call__(self, cls_ids: jnp.ndarray):
13 MLP_p = nn.Embed(self.n_token, [self.d_embed, self.n_factor])
14 MLP_c = nn.Embed(self.n_class, [self.d_embed, self.n_factor])
15 MLP_t = nn.Dense(self.d_token)
16 MLP_f = nn.Embed(1, self.n_factor)
17

18 pos_ids = jnp.arange(self.n_token)
19 factor_ids = jnp.arange(1)[None, None, ...]
20 pos_embed = MLP_p(pos_ids[None, ...]) # 1 x S x P x F
21 cls_embed = MLP_c(cls_ids[..., None]) # B x 1 x P x F
22 fac_embed = MLP_f([None, None, ...]) # 1 x 1 x 1 x F
23 embed = (fac_embed * (pos_embed + cls_embed)).sum(-1)
24 return MLP_t(nn.LayerNorm(embed))

Figure 13. An example code for the token generator in Flax-ish [22] format.

A. Pseudo-code for Token Generator
In Fig. 13 we provide an example code that implements the prompt token generator in Flax [22] format.

B. Comprehensive Experiment Description
B.1. Visual Task Adaptation Benchmark (VTAB)

B.1.1 Dataset Meta Information of Visual Task Adaptation Benchmark

In Tab. 5 we provide a dataset meta information, including the number of class and the number of images in each data split,
of VTAB.

B.1.2 Hyperparameters

We provide hyperparameters used in our experiments in Tab. 6. Note that most hyperparameters are shared across datasets,
except the number of training epochs. We use Adam optimizer [29] with a cosine learning rate decay [38]. When learning
models from scratch, we find that learning rate warm-up is essential. To this end, we use a warm-up for the first two epochs
for AR models, and 80 train epochs for NAR transformers.

B.1.3 Experimental Results

We provide complete results in Tab. 7 for autoregressive transformers, non-autoregressive transformers as well as GAN-
based generative model transfer learning methods including MineGAN [64] and cGANTransfer [53]. For AR and NAR
transformers, we report FIDs for prompt tuning, learning from scratch, as well as different transfer learning techniques
including adapter [25] and fine-tuning [31].

B.1.4 Visualization of Generated Images

We visualize images generated by the models trained on each of VTAB tasks from Fig. 14 to Fig. 29.

15

Highlight

Dataset # class train val test all

Caltech-101 102 2754 306 6084 9144
CIFAR-100 100 45000 5000 10000 60000
SUN397 397 76128 10875 21750 108753
SVHN 10 65931 7326 26032 99289
Flowers102 102 1020 1020 6149 8189
Pet 37 2944 736 3669 7349
DTD 47 1880 1880 1880 5640
EuroSAT 10 16200 5400 5400 27000
Resisc45 45 18900 6300 6300 31500
Patch Camelyon 2 262144 32768 32768 327680
Diabetic Retinopathy 5 35126 10906 42670 88702
Kitti 4 6347 423 711 7481
Smallnorb (azimuth) 18 24300 12150 12150 48600
Smallnorb (elevation) 9 24300 12150 12150 48600
Dsprites (x position) 16 589824 73728 73728 737280
Dsprites (orientation) 16 589824 73728 73728 737280
Clevr (object distance) 6 63000 7000 15000 85000
Clevr (count) 8 63000 7000 15000 85000
DMLab 6 65550 22628 22735 110913

Mean 49.5 102851.2 15332.8 20416.0 138600.0

Table 5. Dataset meta information (e.g., number of images, number of class) for tasks in VTAB.

AR AR AR AR NAR NAR NAR NAR
scratch + Prompt + Adapter + Fine-tune scratch + Prompt + Adapter + Fine-tune

Learning rate 0.0005 0.001 0.001 0.0005 0.0001 0.001 0.001 0.001 / 0.0001
Batch size 128 256 256 128 128 256 256 128

Weight decay 0.045 0 0 0.045 0.045 0 0 0.045
Warmup epochs 2 0 0 0 80 0 0 0

Table 6. Hyperparameter used for experiments. For NAR + Fine-tune, we use the learning rate of 0.001 for new model parameters (e.g.,
prompt) while using 0.0001 for pretrained ones (e.g., transformer). The same hyperparameter is used across all datasets and scenarios.

16

Models Caltech101 CIFAR100 SUN397 SVHN Flower Pet DTD EuroSAT Resisc45 PC DR Kitti

MineGAN 102.4 82.6 77.5 144.7 132.1 130.1 87.4 111.5 81.0 170.3 192.2 117.9
cGANTransfer 89.6 31.4 31.1 64.7 61.6 48.6 70.3 45.6 50.3 119.9 149.8 48.9

NAR

Scratch 72.7 24.2 9.2 44.4 57.2 70.3 66.1 39.5 32.0 48.3 25.6 33.8
Scratch (3200 ep.) 14.5 22.5 7.3 43.5 14.9 8.5 29.2 26.4 24.2 51.1 26.0 26.1
P (S=1) 13.4 26.9 7.2 83.0 13.8 11.8 25.7 45.9 28.7 107.9 84.2 32.2
P (S=16) 12.7 25.5 7.3 80.8 13.2 11.0 26.0 35.8 25.1 71.0 34.2 30.0
P (S=128) 12.9 25.0 7.7 62.3 13.4 10.9 25.9 38.4 24.8 67.4 30.8 29.9
P (S=128, F=16) 11.8 25.0 7.5 63.4 13.3 11.5 26.0 35.8 24.3 61.4 29.2 27.0
P† (S=16) 12.4 25.3 7.3 72.5 12.7 11.2 25.4 36.9 23.7 71.7 34.3 31.2
P† (S=128) 12.2 25.2 7.5 60.4 12.3 11.0 25.7 35.4 24.3 71.7 28.2 29.6
Adapter 11.3 20.3 6.7 43.7 11.0 6.9 25.1 28.2 19.9 46.4 24.9 24.0
Fine-tune 11.3 18.2 6.5 43.9 10.2 6.3 24.2 23.1 18.2 48.0 24.4 22.8

AR

Scratch 76.1 27.1 13.5 31.2 56.1 52.5 92.7 19.4 29.5 32.9 37.0 31.6
Scratch (3200 ep.) 30.5 25.8 14.4 27.9 24.3 28.1 45.1 15.5 11.5 32.3 37.7 33.2
P (S=1) 45.4 25.7 18.8 80.4 28.9 42.2 37.1 37.3 35.1 74.9 93.1 66.8
P (S=16) 41.4 22.5 16.4 55.5 19.6 36.6 33.4 32.6 28.8 49.8 60.7 41.3
P (S=256) 39.6 19.8 15.0 44.0 17.3 34.9 32.5 29.6 26.7 44.0 45.4 37.1
P (S=256, F=16) 27.2 17.6 12.8 42.8 14.1 27.2 30.0 26.4 22.2 44.3 45.4 34.6
P† (S=16) 30.9 19.4 13.7 53.7 15.4 30.8 30.8 30.2 25.7 49.0 60.4 39.7
P† (S=256) 24.6 17.5 12.3 43.1 13.7 25.1 29.8 26.7 20.9 43.6 46.1 35.1
Adapter 27.0 16.7 12.6 29.9 11.8 19.1 30.8 22.4 22.0 39.4 37.3 29.0
Fine-tune 17.6 13.2 9.1 27.7 17.7 10.7 35.4 15.1 11.6 30.9 34.5 29.6

Models SNorbA SNorbB Dspr.A Dspr.B ClevrA ClevrB DMLab Mean ≤ 10K ≤ 100K ≥ 100K Natural Special. Struct.

MineGAN 160.4 161.1 252.7 285.1 212.1 225.6 152.4 151.5 114.0 145.6 236.0 108.1 138.7 195.9
cGANTransfer 93.3 90.5 133.7 165.4 109.4 115.0 98.8 85.1 63.8 80.0 139.7 56.8 91.4 106.9

NAR

Scratch 31.4 32.9 87.5 89.0 12.5 13.3 20.6 42.7 60.0 26.0 75.0 49.2 36.4 40.1
Scratch (3200 ep.) 29.4 30.5 90.1 88.3 13.7 13.5 19.6 30.5 18.6 23.3 76.5 20.1 31.9 38.9
P (S=1) 58.6 58.7 119.5 121.3 58.5 57.9 64.4 53.7 19.4 52.2 116.2 26.0 66.7 71.4
P (S=16) 46.1 42.8 98.7 98.8 27.3 28.2 43.4 39.9 18.6 36.1 89.5 25.2 41.5 51.9
P (S=128) 33.6 35.2 100.9 92.8 21.9 23.6 33.5 36.4 18.6 30.6 87.0 22.6 40.3 46.4
P (S=128, F=16) 36.0 36.1 98.7 99.3 25.6 24.1 32.0 36.2 17.9 30.8 86.5 22.6 37.7 47.4
P† (S=16) 44.1 44.7 96.5 99.0 26.0 27.1 38.9 39.0 18.6 34.6 89.1 23.8 41.7 50.9
P† (S=128) 34.6 38.4 92.2 95.4 24.7 27.5 32.9 36.3 18.2 30.8 86.4 22.0 39.9 46.9
Adapter 29.2 28.7 85.7 86.9 14.6 15.0 20.0 28.9 15.7 22.9 73.0 17.9 29.9 38.0
Fine-tune 67.2 51.3 86.5 88.0 20.6 19.7 23.4 32.3 15.0 28.8 74.1 17.2 28.4 47.4

AR

Scratch 23.1 23.4 76.5 76.6 12.3 12.2 27.8 39.6 61.8 23.3 62.0 49.9 29.7 35.4
Scratch (3200 ep.) 23.4 23.3 76.5 75.1 12.1 11.4 25.5 30.2 32.2 20.8 61.3 28.0 24.3 35.1
P (S=1) 62.2 62.0 215.9 214.0 90.6 91.6 69.0 73.2 44.1 60.5 168.3 39.8 60.1 109.0
P (S=16) 52.9 52.6 102.3 99.8 51.0 49.8 53.6 47.4 34.5 43.3 83.9 32.2 42.9 62.9
P (S=256) 42.4 42.3 83.7 83.7 29.5 28.9 45.2 39.0 32.3 33.5 70.5 29.0 36.4 49.1
P (S=256, F=16) 43.4 42.7 83.8 81.6 30.2 29.0 45.9 36.9 26.6 32.6 69.9 24.5 34.6 48.9
P† (S=16) 51.3 52.2 100.3 97.3 49.6 49.0 54.0 44.9 29.5 41.7 82.2 27.8 41.3 61.7
P† (S=256) 43.5 43.5 86.9 84.3 30.4 29.8 45.7 37.0 25.7 32.7 71.6 23.7 34.3 49.9
Adapter 36.0 36.3 77.8 77.9 15.5 14.9 29.6 30.8 23.5 24.8 65.1 21.1 30.3 39.6
Fine-tune 23.2 23.2 76.8 77.2 11.8 11.5 25.6 26.4 22.2 18.8 61.6 18.8 23.0 34.9

Table 7. FIDs on VTAB tasks tested with various models. We use the “all” set as a reference set for computing FIDs. Unless otherwise
stated, all NAR models are trained for 200 epochs and AR models are trained for 400 epochs with the same hyperparameter settings
specified in Tab. 6. “P” refers to the prompt tuning with the sequence length S and the number of factors F . “DTD”: Describable Tex-
tures Dataset, “PC”: Patch Camelyon, “DR”: Diabetic Retinopathy, “SNorbA”: SmallNorb (azimuth), “SNorbB”: SmallNorb (elevation),
“DsprA”: Dsprites (x position), “DsprB”: Dsprites (orientation), “ClevrA”: Clevr (object distance), “ClevrB”: Clevr (count).

17

藍色為排除Adapter以及fine-tune的best performance
黃色為所有的best performance

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 14. Visualization of generated images with different models on Caltech101 of VTAB.

18

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 15. Visualization of generated images with different models on CIFAR100 of VTAB.

19

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 16. Visualization of generated images with different models on SUN397 of VTAB.

20

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 17. Visualization of generated images with different models on SVHN of VTAB.

21

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 18. Visualization of generated images with different models on Oxford Flowers102 of VTAB.

22

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 19. Visualization of generated images with different models on Oxford iiit Pet of VTAB.

23

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 20. Visualization of generated images with different models on DTD of VTAB.

24

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 21. Visualization of generated images with different models on EuroSAT of VTAB.

25

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 22. Visualization of generated images with different models on Resisc45 of VTAB.

26

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 23. Visualization of generated images with different models on Patch Camelyon of VTAB.

27

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 24. Visualization of generated images with different models on Diabetic Retinopathy of VTAB.

28

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 25. Visualization of generated images with different models on Kitti of VTAB.

29

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 26. Visualization of generated images with different models on Smallnorb of VTAB.

30

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 27. Visualization of generated images with different models on Dsprites of VTAB.

31

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 28. Visualization of generated images with different models on Clevr of VTAB.

32

(a) MineGAN (b) cGANTransfer

(c) AR transformer with prompt tuning (S = 1) (d) AR transformer with prompt tuning (S = 256, F = 16)

(e) NAR transformer with prompt tuning (S = 1) (f) NAR transformer with prompt tuning (S = 128)

Figure 29. Visualization of generated images with different models on DMLab of VTAB.

33

(a) Places, 5-shot, Left: real, Right: generation.

(b) Places, 500-shot, All generation, without cherry-picking.

Figure 30. Fewshot generation on places.

B.2. Few-shot Generative Transfer

B.2.1 Visualization of Generated Images

34

(a) ImageNet, 5-shot, Left: real, Right: generation.

(b) ImageNet, 500-shot, All generation, without cherry-picking.

Figure 31. Fewshot generation on ImageNet.

35

(a) Animal Face, 5-shot, Left: real, Right: generation.

(b) Animal Face, 100-shot, All generation, without cherry-picking.

Figure 32. Fewshot generation on Animal Face.

36

	1 . Introduction
	2 . Preliminary
	2.1 . Generative Vision Transformers
	2.2 . Prompt Tuning

	3 . Visual Prompt for Generative Transfer
	3.1 . Building and Learning Visual Prompt
	3.1.1 Learning Visual Prompt
	3.1.2 Prompt Token Generator Design

	3.2 . Engineering Learned Prompts

	4 . Experiments
	4.1 . Generative Transfer on VTAB
	4.2 . Few-shot Generative Transfer

	5 . Analysis and Discussion
	5.1 . What does the Prompt Learn?
	5.2 . Adaptation-Diversity Trade-Off
	5.3 . Ablation on Prompt Token Generators
	5.4 . Beyond Prompt Tuning for Generative Transfer

	6 . Related Work
	7 . Conclusion
	A . Pseudo-code for Token Generator
	B . Comprehensive Experiment Description
	B.1 . Visual Task Adaptation Benchmark (VTAB)
	B.1.1 Dataset Meta Information of Visual Task Adaptation Benchmark
	B.1.2 Hyperparameters
	B.1.3 Experimental Results
	B.1.4 Visualization of Generated Images

	B.2 . Few-shot Generative Transfer
	B.2.1 Visualization of Generated Images

