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Introduction

• The goal of image synthesis is to generate diverse and plausible scenes resembling 
the training images.

• The generalization ability is usually determined by the amount of training images. 

• Recent efforts have shown success in transferring knowledge from pretrained 
Generative Adversarial Network (GAN) models [42, 53, 64, 68], these 
demonstrations are limited by narrow visual domains, e.g., faces or cars [42, 68].

• In this work, we approach the transfer learning for image synthesis using generative 
vision transformers, such as DALL·E [47], Taming Transformer [14], MaskGIT [6], 
CogView [12], NÜ WA [67], or Parti [70]
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• Our study employs the visual task adaptation benchmark (or VTAB) [71]

• We present a transfer learning framework using prompt tuning [34,36]. The 
technique has been used for transfer learning of discriminative models for 
vision tasks [1,26], this work appears to be the first to adopt prompt 
tuning for transfer learning of image synthesis.
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• We propose two technical innovations. First, a parameter efficient design of prompt 

token generator that admits condition variables (e.g., class, instance).

• Second, a marquee header prompt that engineers (e.g., composes and interpolates) 

learned prompts to enhance generation diversity.

• We show that generative vision transformers with prompt tuning outperforms the 

prior state-of-the-art held by GANs [53,64] through a vast margin.
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Contributions

1. Present a generative visual transfer learning framework for vision 
transformers with prompt tuning [34], proposing a novel prompt token 
generator design and a prompt engineering method for image 
synthesis

2. Conduct a large-scale empirical study for generative transfer learning to 
validate our method on a variety of visual domains and scenarios (e.g., 
few-shot). To this end, we show state-of-the-art image synthesis 
performance. 

3. The first to employ prompt tuning for transfer learning of image 
synthesis, and provide one-of-the-first substantial empirical evidence on 
the necessity of knowledge transfer for data and compute efficient 
generative image modeling using the standard visual transfer learning 
benchmark

[34] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In Proceedings 

of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3045–3059, 2021. 1, 2, 3, 4, 11 
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Preliminary 2.1Generative Vision Transformers
• Generally, there are two types of generative vision transformers: Auto Regressive 

(AR) and Non-Auto Regressive (NAR) transformers, both consisting of two stages 
[14,47]: image quantization and decoding.

• The first stage is the same between the two types of models in which the image is 
quantized into a grid of discrete tokens by a Vector-Quantized (VQ) autoencoder 
[14, 48, 60, 69]

• In the second stage of decoding, AR transformers follows a raster scan ordering, 
generating tokens from left to right, line-by-line. Finally, the generated tokens are 
mapped to the pixel space using the VQ decoder
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• NAR Transformer Process: Begins with a fully masked canvas and generates 
images in approximately 8 steps. Each step predicts tokens simultaneously, 
preserving those with top prediction scores.

• We employ a prompt tuning [26,34,36] that uses a sequence of learnable tokens 
(e.g., green blocks with a solid line) to adapt to target distributions, while leaving 
transformer parameters frozen.
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2.2. Prompt Tuning

• Here, prompt is a sequence of additional tokens prepended to a token sequence

• In prompt tuning [34, 36], tokens are parameterized by learnable parameters and their 
parameters are updated via a gradient descent to adopt transformers to the downstream task.

[34] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In Proceedings of the 2021 Conference on Empirical 
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[36] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint arXiv:2101.00190, 2021. 1, 3, 4, 11

9



Methodology 3.1.1 Learning Visual Prompt

• Let 𝑍 = 𝑧𝑖 ⅈ=1
𝐻×𝑊 be a sequence of visual tokens (i.e., an output of VQ encoder 

followed by the vectorization) and                            be a sequence of prompt 
tokens. 

• For AR transformer, the loss is given as follows: 

• For NAR transformer, we follow the loss of MaskGIT [6]:
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• We generate visual tokens for image synthesis by iterative decoding. 

• For AR transformer:

• For NAR model, scheduled parallel decoding [6] is used:
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where {n1, ..., nT } is a masking schedule that decides the number of tokens 

to decode at each decoding step.

[6] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative image transformer. arXiv preprint arXiv:2202.04200, 2022. 1, 2, 3, 4, 6, 7, 10



3.1.2 Prompt Token Generator Design
• We accomplish condition variables (e.g., class, attribute)  with rather a straightforward 

extension of existing prompt designs using a class-condition, Pφ(c), as in Fig. a.

• To make it parameter efficient, we propose a factorized token generator, as in Fig. b

• Specifically, we encode class and sequence position index via 𝑀𝐿𝑃𝐶 and 𝑀𝐿𝑃𝑃 with F 
factors, respectively.
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3.2. Engineering Learned Prompts

• We propose a novel prompt engineering strategy, a “Marquee Header” prompt, of 
the iterative transformer decoding, for enhancing the generation diversity.

• We interpolate the learned prompt representations (e.g., outputs of 𝑀𝐿𝑃𝐶). 

• We provide a marquee header prompt formulation:
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where t = 1, ..., T is a decoding step, 𝑇𝑐𝑢𝑡𝑜𝑓𝑓 ≤ T is a cutoff step, and 𝑃𝑇𝑀𝑖is a 

prompt representation (e.g., an output of 𝑀𝐿𝑃𝐶).

The schedule in Eq. (7) makes a smooth transition of prompts from 𝑃𝑇𝑀1 to 𝑃𝑇𝑀2.
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Experiments 4.1. Generative Transfer on VTAB

• VTAB Benchmark: Utilized the VTAB [71], consisting of 19 visual recognition 
tasks across 16 datasets.

• Generative Transfer Techniques: Examined generative transfer via AR and NAR 
transformers. Used class-conditional Taming Transformer [14] and MaskGIT [6] 
trained on 256×256 ImageNet images.

• Comparison with GAN-based Methods: Our method vs. MineGAN [64] & 
cGANTransfer [53]. Both algorithms leverage BigGAN [2] from ImageNet.

• Efficiency Analysis: Compared with transformers trained from scratch on VTAB. 
Emphasized compute efficiency by maintaining a similar compute budget for both 
model training types.

15



• We use Frechet Inception Distance (FID) [24] as a quantitative metric. We 
generate 20k images from each model and compare with images from a respective 
dataset.

• Compared with using only 1 token, we find that using 128 tokens for the prompt 
increases the overall generation time by 25%.
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4.2. Few-shot Generative Transfer
• We limit our study to transfer of an NAR transformer, i.e., MaskGIT [6], but with 

more comparisons to existing few-shot image generation models, either with [53, 
64] or without [56, 73] knowledge transfer.

• We study few-shot generative transfer learning on Places [74], ImageNet [9], and 
Animal Face [54]. 

• For Places and ImageNet, we select 5 classes and use 500 images per class for 
training.

• For Animal Face, we consider two scenarios – following [53], we use 100 images 
per class for training from 20 classes (denoted as “Animal Face” in Tab. 2); 
alternatively, following [56, 73], we use all images of dog (389) and cat (160) 
classes for training.

• We tested our methods on challenging tasks from DomainNet [45] Infograph and 
Clipart (345 classes), and ImageNet sketch (1000 classes) [63], using only 2 
training images per class. 19



• Baselines: GAN-based generative transfer learning methods, e.g., MineGAN [64] 
and cGANTransfer [53], are used as baselines. Moreover, we compare to few-shot 
image generation models, e.g., DiffAug [73] and LeCam GAN [56].

• FID Calculation: FIDs are computed using 10k generated images. However, for 
dog and cat face experiments, only 5k images are used, following the approach in 
[73].
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• Data Efficiency: We studied data efficiency by training models on ImageNet, 
Places, and Animal Face datasets with 5, 10, 50, and 100 images per class, using a 
class-condition for image generation. 
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Enhancing Generation Diversity via Prompt Engineering:

• Our model offers a way to enhance generation diversity by composing prompts.

• We conduct experiments on the dog and cat faces dataset using marquee header 
prompts with different 𝑇𝑐𝑢𝑡𝑜𝑓𝑓 values.

• For the fidelity metric, we compute the FID. 

• To measure the diversity, we follow [42] and report a intra-cluster pairwise LPIPS 
distance, where we generate 5k samples and map them into one of training images.
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Analysis and Discussion
5.1. What does the Prompt Learn?
• The goal of this section is to investigate what prompts have learned. 

• For this study, we train instance conditioned prompt models on flowers dataset of 
VTAB, with S = 1 and 128.

• We used a visualization technique called t-SNE [61]  to display the relationships 
between these prompts. The results showed that similar prompts (representing 
the same flower categories) cluster together. 

• We quantify our observation using a normalized mutual information (NMI) 
computed by clustering prompts. 

• The results are better than the number obtained using an embedding from 
ImageNet pretrained ResNet-50 [21] (NMI=0.734).
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5.2. Adaptation-Diversity Trade-Off

• In this section, we study prompts with various lengths, but on a single image.

• With short prompts, the model produces diverse but less detailed images. This 
implies that the short prompt learns concepts, while the long prompt learns fine 
details of training data. 
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• We visualize images generated by models of Sec. 5.1. 



5.3. Ablation on Prompt Token Generators 
• For models using prompts with the proposed factorization closely matches those 

using the baseline, non-factorized prompts.

• AR transformers achieve on par results with the baseline using less than 30% of 
parameters
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5.4. Beyond Prompt Tuning for Generative Transfer

• We conducted a comprehensive study on various learning methods for generative 
vision transformers, ranging from 10 to 3200 training epochs, emphasizing the 
significance of training efficiency.

• Adapter tuning [25] introduces learnable adapter modules to each transformer 
block, while fine-tuning unfreezes and updates pretrained weights..

• We integrated class-conditional prompts of length 1, randomly initialized, for both 
adapter tuning and fine-tuning.

• Prompt tuning showcased superior efficiency, with its trainable parameters 
being less than 0.5% of those in fine-tuning and learning from scratch.
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• Fig. 12 compares the generation performance in FID on VTAB.

• It requires almost 800 epochs for models learned from scratch to reach FIDs of the 
prompt tuning models trained for 10 epochs for tasks with a small data.

• For tasks with a small training data, fine-tuning shows the best FIDs. On the 
other hand, we find that fine-tuning behaves unstable on some datasets (e.g., 
smallnorb), and the performance diverges as training goes.
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6. Related Work

• TransferGAN [65], by fine-tuning on the target dataset, has shown that leveraging 
pre-trained knowledge enhances performance with limited data. Freezing certain 
discriminator layers [40] further boosts and stabilizes the training.

• MineGAN [64] introduces a miner, which projects random noise into the 
embedding space of the pretrained generator, and trains it with discriminator while 
fixing generator parameters. 

• cGANTransfer [53] makes explicit transfer of knowledge on classes of the source 
dataset to new classes.
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7. Conclusion

• We introduce a method to learn image generation from diverse data using 
knowledge transfer from a large-dataset-trained source model.

• A tweak in prompt token design aids in learning efficient class and instance-
specific image generation models of autoregressive and non-autoregressive vision 
transformers.

• Comprehensive experimental results of image synthesis are provided across 
diverse visual domains, tasks, and the number of training images.

• We also show how to use learned prompts for novel image synthesis in the form of 
marquee header prompts, especially beneficial when generating from limited 
image data.
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Thank you for listening
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